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Abstract. In the prrsenl paper the confining potential and the uate functionsof 1heox)gen 
anion in the iwp on the (0011 surface of hlgO are calculated from first pnnciplcr. The 
confining potential is found strong enough for the 0.: anion the step to be stablc The 
method isdescnbed and the calculated potential and save functions arc given m the paper 

1. Introduction 

The structure and properties of defects in a crystal surface are of particular interest 
because defects strongly influence physical processes on the surface. Due to the very 
nature of the problem it cannot be solved by experimental means only. It  is necessary 
to employ the electronic structure theory, which, together with experiment. could 
provide anadequate physical model. Also, forsurfdcedefectssuchasstepstheelectronic 
structure problem is difficult because the system under consideration has only one- 
dimensional periodicity with low symmetry and low coordination. To the authors' 
knowledge there are only a few wave-function calculations frith the cluster method and 
geometry calculations with the atom-atom potential method Il-81. 

For ionic and covalent solids it is expedient to describe the surface with defects in 
terms of interacting atoms or ions. Therefore, one of the appropriate methods for the 
calculation of the electronic structure of surface defects is the bariable potential (VP) 
method developed for the bulk crystal [9, 101 and applied to the ideal surface [ l l ] .  In 
this method the local orbital description of a crystal is used and the cqstal is considered 
to be constructed from ions. The VP is an ab-initio method based on the variational 
principle for the total electronic energy of the crystal. 

2. Method 

Let us consider a large but finite crystal and assume that a; each lattice site 6 of this 
crystal there is an ion with several one-electron functions (orbitals) q8,,,(r) localized 
around thissite. Theorbiralsq.,,,aresupposedto besolutionsofthesystemofequations 

where Fg is the Fock operator (non-linear) of a single ion 6 ,  and V, describes the field of 
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the rest of thecrystal. The orbitalson the different sitesarenot required to beorthogonal. 
Equation (1) is similar to the exact Adams-Giilbert equation but, instead of the very 
involved operator, the potential V, in the VP method is assumed to be a local one and to 
have an analytic expression with parameters. So (1) is the system of Hartree-Fock 
equations for every ion g in the external potential V,, the equations for different sites 
not being coupled explicitly. The parameters in V, have to be adjusted so as to bring the 
total energy of the crystal to minimum. The dependence of the energy of the crystal on 
these parameters is defined by the following process. 
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(i) Select the set of parameters for the potential Vp. 
(ii) Calculate, to self-consistency, the Hartree-Fock problem (1) for every ion in the 

selected potential V,and obtain the local orbitals p8,,. 
(iii) Calculate the total electronic energy of the crystal with obtained orbitals vS,. 

and with the exact Hamiltonian. 

With the help of this process one can employ any suitable procedure to minimize the 
energy with respect to the parameters. The potentials V, for different sites g are not 
independent because they are being adjustedsimultaneously to minimize the same total 
energy of the crystal. Consequently, the equations (1) for different g are also not 
independent, but their coupling is hidden in the minimization procedure. In the VP 
method the potential V, plays an intermediate role to define the subspace of trial 
functions (through equation (1)) for the energy functional. However, once the potential 
is found it can easily be used for some qualitative arguments. 

In MgO the MgZ+ ion is rather tightly bound (the ionization potential of Mg” is 
80 eV) and there is only a small difference between the free ion and the one in the solid. 
Therefore for practical reasons we took orbitals of the free M$+ as the cations pS,. 
orbitals. Contrary to that, the free 02- ion isunstable and it is the crystal environment 
which stabilizes it. So in this case the potential V8 is the confining potential. The results 
of calculations for bulk MgO [lo] and CaO [12] show that the confining potential is 
strong enough to help oxygen to hold two extra electrons and to become the 0’- ion. 

In [ll] it was shown that the confining potential for the surface anion in the (001) 
surface of MgO does not differ substantially from that of the bulk anion. The reason is 
as follows. The confining potential can be divided into a long-range (electrostatic) part 
and a short-range part. Both parts of the confining potential change considerably when 
transferring from the bulk to the surface but change in opposite directions, so for the 
surface anion the absence of the short-range repulsive potential from the vacuum region 
essentially compensates for the attractive electrostatic potential from the semi-infinite 
crystal, Moreover in [13] it was shown that the same compensation should take place in 
the cases in which the anion is in different positions in the surface step, or even in the 
kink. The fact that for both (001) and (011) surfaces of MgO the value of the surface 02- 
dipole momentsfound in [14,15] are one order of magnitude smaller than those obtained 
byasimplemultiplicationofthe0’- polarizabilityinMgO[16] by theelectrostatic field, 
confirms the said compensation. 

In this paper the electronic structure of 0’- ions in the step on the (001) surface of 
MgO is considered. Only the anions at the top of the step (anions T in figure 1) and at 
the bottom of the step (anions B in figure 1) were calculated here. All the surface ions 
except T and B were assumed to be ideal surface ions [ 111 and the rest of the crystal was 
assumed to be composed of the ideal bulk ions [lo]. 
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In analogy with the cases of the bulk or the ideal (001) surface of MgO, the confining 
potential for step anions was assumed to have the spherically symmetrical form 

Vg(r) = V,[1 - (1 - e-or6)"g] (2) 

with three parameters Vag, rig and ag. In spite of lower coordination in positions T and 
B, the approximation (2) is a reasonable one because the cancellations of the long-range 
and the short-range parts of the confining potential due to the particular symmetry of 
the system [13] results in a smoothing of the potential. The spherical symmetry of the 
confining potential (2) means that the spherically symmetric part of the 0,- deformation 
is assumed to be the most important. Indeed in the Hartree-Fock calculations of MgO 
it was found [17] that the deformation of the bulk 0,- anion due to the tetrahedral 
distortion of the crystal was essentially spherically symmetric. Moreover, it should be 
noted that the potential (2) defines the symmetry of non-orthogonal orbitals and the 
orthogonalization procedure reduces this symmetry to that seen in the actual crystal. 

The essential feature of the VP method is the energy expression. In this paper, as in 
our previous papers [9-11], we adopted the cluster expansicn for the energy 

E = X Eg + Z Eg,,gz + C Egl,gZ,g3 + . . .. (3) 
8 g1>@ gl >g2 >g3 

The one-body term, Egr is the self-energy of ion g, that is the value of the energy 
functional of the free ion calculated with orbitals qxa of the crystal ion. The two-body 
term, Egl.gz, 

Egb2 = eglek-/IR,l - RgZI + nglg2 (4) 
is the sum of the long-range electrostatic term (eg, and eg2 are the charges of the 
corresponding ions, g, and g,) and the short-range term, FI,,,, which contains different 
two-centre molecular integrals (overlap, Coulomb, exchange, Coulomb-exchange, etc) 
calculated with the orbitals qgln and qgzn. Two-body terms were calculated in this work 
without additional approximations. The three-body terms, Egt,gZ,g3r are very compli- 
cated. Apart from the different three-centre molecularintegrals, they containthe inverse 
of the total overlap matrix of three ions. That makes the summation in (3) for low- 
symmetry systems, such as the surface step, unpractical. But three-body terms are 
comparatively small; they have order of magnitude Sz, S being the maximum of the 
absolute values of overlap integrals (usually S = 0.1 for ionic crystals). Calculating the 
three-body term within the S2approximation andomitting all themultipole termsexcept 
those with I=O (see [9-111 for details) one can find the following expression for Eglgzo, 

Egl&3 = (rg1&3 + fg2g3gl + tgjglgZ)/3 (5)  

(6) 

where 

'glgZg3 = -zeg30g1&/lRg1 - Rg31 + 1/\Rg2 -Rg31 - 2/1&2 - % I ) .  
Here 

is the sum of the squares of the moduli of the overlap integrals between orbitals of ions 
g, and g2. Rglgz in (6) is equal to the cation radius-vector if ions g, and g, are cation and 
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Figure 1. (100) surface of MgO with a step. 0 
oxygenanion,.: magncsium cation. 

FigureZ. Separationof thecrystdintoparts(side 
view): fa) with ideal suriaces; (b) with suriaces 
with one step. 

anion and is equal to (R8, t R&/2 ifionsg, and g, are both cations or both anions. All 
n-body contributions with n > 3 were omitted in the present work because they are of 
order of magnitude S"-', and the S2 approximation was already used in the three-body 
calculations. 

Itshouldbepointedoutthatalthoughin the wmethod theclusterexpansionisused, 
this method is not the usual cluster method, because it does not single out the cluster 
fromtherest of thecrystalforadifferent approach. Inthev~methodallionsaretreated 
in the same way. The cluster expansion, (3), is the expression which substantially helps 
the infinite summation over the crystal. 

It is evident that in order to calculate wave functions of the step anions, only those 
terms in the energy expression which explicitly depend on the shape of these orbitals 
should be considered. It was found most convenient to obtain the expression for such 
terms by considering the separation of the crystal into two halves. Let Eu be the energy 
of the whole crystal, E, the energy of one half of the crystal with ideal surface and E, 
the energy of one half of the crystal with a surface with one step on it. Then the energy 
of the ideal surface is 

W' = (2Ej  - Eo)/2 

W = (2EZ - Eo)/2. 

W =  E, - E l  = W'- W .  

(8) 

(9) 

(10) 

and the energy of the surface with one step is 

Hence the energy of the step is 

The separation of the crystal into parts can be considered as proceeding in three stages. 
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First, all the crystal orbitals are frozen to their nuclei and the relative positions of ions 
in each part are also frozen; then the parts are separated from each other to infinite 
distance. Second, the relative positions of ions in each part are kept frozen; but the 
orbitals are unfrozen so the ions are allowed to electronically relax. Third, the positions 
of the ions are also unfrozen, so ionic relaxation can take place together with a small 
additional electronic relaxation. Let W1, Wz and W ,  be the energies of these three 
processes, respectively. Then 

w= w, + w, + w3 = (Wy - Wi) + (w; - w;) + (w; - W i ) .  (11) 
In practice, to calculate the value Wl one has to draw a surface dividing the crystals into 
parts (figure 2) and sum up the energies of broken bonds (including both the electrostatic 
and the short-range contributions). 

Due to the one-dimensional periodicity of the crystal with the surface step it is not 
possible to consider the infinite total energies W,, Wz and W3 of the whole crystal but 
rather to consider the energies per unit cell w l ,  wz and w3. These are finite in spite of the 
infinite sue of the unit cell because of the cancellation of the infinite sums in W' and W". 

We did not take into account the w3 contribution because estimations show that its 
intluence on the orbitals of the anions is rather small. The displacements of the ions in 
the ideal (001) surface of MgO and in the step are also small and the experimental data 
concerning these displacements are uncertain. Therefore all the calculations reported 
here were carried out for the geometry corresponding to the ideal lattice. 

To calculate w 1  and w, it is necessary to perform summation (3) over the crystal 
(infinite, semi-infinite with the ideal surface or with the step on the surface). The 
structure of (4) and (6) makes it possible to fulfil the summation of the long-range and 
the short-range terms separately. The long-range terms give rise to the various lattice 
sums which could be calculated using any conventional method of summation. As to the 
short-range contributions, we retained only I'iZLg2 and  corresponding to the nearest 
neighbours and to the nearest anions because all others were found to be small, as is 
usually the case for ionic crystals. To distinguish between different ions we shall use the 
following notations for the subscript g:g = C for cations (as mentioned above, we 
assume the orbitals of cations in any position are the same), g = A for the bulk anion, 
g = S for the surface anion and g = T, g = B for anions in the step (see figure 1). 

Thus, for example, IITc is the short-range interaction energy between the anion on 
the top of the step and the nearest to it cation. With these notations and after the 
summation over the crystal we obtain, 

w1 -2(l'ICA + nu)  + 5 .966~cA + 1 . 3 0 0 ~ a  (12) 

(13) W z  = WT - ws + WB - WA f 2 [C,,!dny - &) + D,I,kf('J, - ' J k d l .  
r./.k,I 

The sum in (13) i s  somewhat artificial. It is written to make the expression compact 
andcontains seven termsonly, the indicesofthesummationand the valuesofcoefficients 
for every term being shown in table 1. The numerical coefficientsin (12) and (13) arise 
from various combinations of bulk and surface lattice sums. 

3. Results and discussion 

According to the VP method the orbitals of 0,- ions T and B should be found by 
minimization of wz alone because w1 does not depend on these orbitals. The anion B 
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Table 1. Coefficients in equation (13). 

i i k I C#.M %U 

t 
C T C s 4 -4.890 
A T A S I 0.904 
B T A S 2 1.812 
s T s S 3 2356 
B C A C 6 -8.953 
A B A A 1 4.380 
B S A S 3 2450 

Table 2. The one-electron wave functions of oxygen in the step (oxygen T) with the Slaler- 
type-orbital basis. 

n, <, CI, C, "P CP c, 
1 7.6169 0.8958 -0.1999 2 1.5566 0.5854 
1 12.2m 0.0643 -O.M)91 2 3.4300 0.3136 

2 7.0898 0.0521 -0.W21 3 1.2500 0,2286 
2 1.4861 -0.oM)7 0.4632 

%I -20.375 -1.0802 E., -0.3633 

2 2.7615 0.0047 0.6453 2 a.iz6a 0.0098 

Table 3. Parameters (in au) of anions on different sites. 

w., 4- v, s, 
, ..,. , "~ ...,,.- ...,.., , ,i_.. Site V, 4 Er 

~ ~~~ 

A -0.90 0.74 -74.312 -1.41 0.50 -1.47 
s -0.90 0.65 -74.343 -1.52 0.44 -1.40 
T -0.79 0.65 -74.357 -1.32 0.43 -1.36 

has six nearest neighbours, the same as the bulk anion, and eleven second-nearest 
neighbours in comparison with twelve for bulk anion. Therefore, anion B should not 
differ significantly from the bulk anion and at 6rst one can neglect this difference. In this 
case Es = E A  and also part of the sum in (13) vanishes. The parameters of the potential 
V, for anion T were chosen as described in our previous papers [9-11], namely nT = 10, 
V, ,  = -0.79 au (the Madelung potential for the site T) ,  crT is a variational parameter. 
The energy wz was found to have a minimum at crT = 0.65. The corresponding orbitals 
of the oxygen Tare given in table 2. The potential parameters V,, 4, the self-energy 
,Eg, the non-electrostatic part of the interaction energy Wioi of the oxygen anion with the 
rest of the crystal, the 2p one-electron energy with respect to the bottom of the potential 
well, 

To consider the stability of the Oz- anion at the site T, equation (1) was solved for 
an 0- anion in the confining potential found for the 0'- anion. The results of the 
calculations are as follows. The self-energy of the 0' anion at the site T is only 0.7 eV 

- V,, are given in table 3 for different lattice sites. 
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greater than the energy of the free 0- anion, and the deformation of the 0- anion is 
rather small. The difference between the self-energies of the 02- and 0- anions at the 
site T is 11 eV. This quantity can be considered as the localization energy for the second 
electron of the 02- anion at site T. The energy of the short-range (repulsive) interaction 
with the crystal environment of the 02- anion is 3 eV greater than that of the 0- anion, 
and the long-range (electrostatic) interaction ofthe 02- anion is21 eVsmaller than that 
of the 0- anion. Hence it takes 7 eV to remove one electron to infinity from the 02- 
anion at site T, and therefore the Oz- anion at site T is stable. 

The values of Egr Win,, and E,+ - V ,  from table 3 show that the localizing effect of 
the crystal environment on the step oxygen is similar to that for the bulk or surface 
anions. At the same time the confining potential for the anion T is weaker than that for 
the anion S ,  and consequently the electronic shells of the T anion are more diffuse than 
those of the S anion. To estimate this effect, the charge inside the ionic sphere 

was calculated for Oz- in different positions. In (14) the integration is over the volume 
of an ionicsphere with radius 1.4 8, which is an appropriate value for the 02- anion. The 
results of these calculations (see table 3) show that the charge inside the ionic sphere 
decreases in succession from the bulk to the ideal surface and to the surface with the 
step, but not substantially. 

Calculations in which both T and B anions were allowed to relax were also carried 
out.Thefollowingpotentia1parameterswerechosen: nT = nB = 10, V,, = -0.79, V,,, = 
-0.90, or, and aB were variational parameters. The energy w 2  was found to have a 
minimum at ai = 0.64, aB = 0.71. Hence the confining potential for the B oxygen is in 
between the confining potentials for the bulk and the ideal surface, being closer to that 
of the bulk. Consequently the deformation of the anion B is smaller than that of the S 
oxygen, making it very small as expected. The value of ol, had changed only a little when 
the ion B was allowed to relax, so the additional deformation of the anion Tis very small 
indeed. Therefore, the conclusion about the stability of 0”- anions is valid in this case 
too. 
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